23 research outputs found

    Comparative assessment of RAMS and WRF short-term forecasts over Eastern Iberian Peninsula using various in-situ observations, remote sensing products and uncoupled land surface model datasets

    Get PDF
    The Regional Atmospheric Modeling System (RAMS) and the Weather Research and Forecasting (WRF) mesoscale models are being used for weather and air quality studies as well as forecasting tools in Numerical Weather Prediction (NWP) systems. In the current study, we perform a comparative assessment of these models under distinct typical atmospheric conditions, classified according to the dominant wind flow and cloudiness, over Eastern Iberian Peninsula. This study is focused on the model representation of key physical processes in terms of meteorology and surface variables during a 7-days period in summer 2011. The hourly outputs produced by these two models are compared not only with observed standard surface variables, measured at different permanent weather stations located over the region of study, but also with different surface remote sensing products and uncoupled Land Surface Models (LSM) datasets. Confronting RAMS and WRF, the current study highlights relevant differences over areas near the coast when mesoscale circulations or Eastern synoptic advections are developed over the region of study. A higher moisture content is observed under these atmospheric conditions, due to the moisture transport by the sea breeze inland. In this regard, it has been found that the Eastern wind field simulated by WRF reaches inland areas and comprises a larger sea breeze extension than RAMS. This sea breeze development impacts meteorology and surface variables in locations not too close to the coast, but still affected by land-sea winds. Additionally, WRF remains more windy and moister than RAMS at night-time, while alike results are found under Western synoptic advections. The results obtained in the current paper show differences under distinct dominant atmospheric conditions, which outline further research in this field in order to achieve more general conclusions

    Improved meteorology and surface fluxes in mesoscale modelling using adjusted initial vertical soil moisture profiles

    Get PDF
    The Regional Atmospheric Modeling System (RAMS) is being used for different and diverse purposes, ranging from atmospheric and dispersion of pollutants forecasting to agricultural meteorology and ecological modelling as well as for hydrological purposes, among others. The current paper presents a comprehensive assessment of the RAMS forecasts, comparing the results not only with observed standard surface meteorological variables, measured at FLUXNET stations and other portable and permanent weather stations located over the region of study, but also with non-standard observed variables, such as the surface energy fluxes, with the aim of evaluating the surface energy budget and its relation with a proper representation of standard observations and key physical processes for a wide range of applications. In this regard, RAMS is assessed against in-situ surface observations during a selected period within July 2011 over Eastern Spain. In addition, the simulation results are also compared with different surface remote sensing data derived from the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) (MSG-SEVIRI) as well as the uncoupled Land Surface Models (LSM) Global Land Data Assimilation System (GLDAS). Both datasets complement the available in-situ observations and are used in the current study as the reference or ground truth when no observations are available on a selected location. Several sensitivity tests have been performed involving the initial soil moisture content, by adjusting this parameter in the vertical soil profile ranging from the most superficial soil layers to those located deeper underground. A refined adjustment of this parameter in the initialization of the model has shown to better represent the observed surface energy fluxes. The results obtained also show an improvement in the model forecasts found in previous studies in relation to standard observations, such as the air temperature and the moisture fields. Therefore, the application of a drier or wetter soil in distinct soil layers within the whole vertical soil profile has been found to be crucial in order to produce a better agreement between the simulation and the observations, thus reiterating the determining role of the initial soil moisture field in mesoscale modelling, but in this case considering the variation of this parameter vertically

    A component-based approximation for trend detection of intense rainfall in the Spanish Mediterranean coast

    Get PDF
    Rainfall behavior is a fundamental issue in areas with scarce and irregular amounts, such as the Spanish Mediterranean region. We identified 12 spatial patterns that characterized 899 torrential precipitation events (≥150 mm in 24 h) that occurred in the 3,537 rainy precipitation series in the period 1950-2020. Three of these components--eastern and ESE--showed positive and significant trends in their accumulated volumes. We then characterized the mean synoptic causes of the 10 most intense events in each component at both mean sea-level pressure and 500 hPa geopotential height, and also the integrated water-vapor transport between 1,000 and 300 hPa. We found a clear spatial distribution of the pluviometric effects related to unstable atmospheric situations (such as troughs and cut-off lows), and also to SW-SE advection fluxes that brought moist air from the Western Mediterranean. In particular, torrential rainfall in the Balearic Islands related more to E-NE advections than to southeastern ones. We also determined that the major parts of these components occurred in early autumn, especially in September and October. We expect these findings to help our understanding of the processes leading to catastrophic situations along the Spanish Mediterranean coast and to lead to improvements in early alert systems and management plans

    Distance disintegration characterizes node-level topological dysfunctions in cocaine addiction

    Get PDF
    Previous investigations have used global graph theory measures in order to disentangle the complexity of the neural reorganizations occurring in cocaine use disorder (CUD). However, how these global topological alterations map into individual brain network areas remains unknown. In this study, we used resting state functional magnetic resonance imaging (fMRI) data to investigate node-level topological dysfunctions in CUD. The sample was composed of 32 individuals with CUD and 32 healthy controls, matched in age, years of education and intellectual functioning. Graph theory measures of optimal connectivity distance, node strength, nodal efficiency and clustering coefficient were estimated in each participant using voxel-wise functional connectivity connectomes. CUD individuals as compared with healthy controls showed higher optimal connectivity distances in ventral striatum, insula, cerebellum, temporal cortex, lateral orbitofrontal cortex, middle frontal cortex and left hippocampus. Furthermore, clinical measures quantifying severity of dependence were positively related with optimal connectivity distances in the right rolandic operculum and the right lateral orbitofrontal cortex, whereas length of abstinence was negatively associated with optimal connectivity distances in the right temporal pole and the left insula. Our results reveal a topological distancing of cognitive and affective related areas in addiction, suggesting an overall reduction in the communication capacity of these regions. © 2021 The Authors. Addiction Biology published by John Wiley & Sons Ltd on behalf of Society for the Study of Addiction

    Agenda de investigación: smart cities y seguridad en Andalucía = Research agenda: smart cities and security in Andalusia, Spain

    Get PDF
    Smart cities' security governance is a significant challenge that requires careful planning, design, and management. Unfortunately, the number of Andalusian researchers and research groups working on this topic is currently limited, which hinders scientific progress, international competitiveness, and knowledge transfer. To address this issue, this project aims to establish a research agenda to identify the most relevant topics, facilitate resource allocation, and encourage collaboration among researchers, industry, and the public sector. In the near future, effective security management in smart cities will require multidisciplinary approaches that bring together experts from various fields. By promoting coherent initiatives and establishing robust research programs, we can build a strong foundation for sustainable smart cities.P20-00941Security and Global Affair

    Spread of a SARS-CoV-2 variant through Europe in the summer of 2020.

    Get PDF
    Following its emergence in late 2019, the spread of SARS-CoV-21,2 has been tracked by phylogenetic analysis of viral genome sequences in unprecedented detail3–5. Although the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced. However, travel within Europe resumed in the summer of 2020. Here we report on a SARS-CoV-2 variant, 20E (EU1), that was identified in Spain in early summer 2020 and subsequently spread across Europe. We find no evidence that this variant has increased transmissibility, but instead demonstrate how rising incidence in Spain, resumption of travel, and lack of effective screening and containment may explain the variant’s success. Despite travel restrictions, we estimate that 20E (EU1) was introduced hundreds of times to European countries by summertime travellers, which is likely to have undermined local efforts to minimize infection with SARS-CoV-2. Our results illustrate how a variant can rapidly become dominant even in the absence of a substantial transmission advantage in favourable epidemiological settings. Genomic surveillance is critical for understanding how travel can affect transmission of SARS-CoV-2, and thus for informing future containment strategies as travel resumes. © 2021, The Author(s), under exclusive licence to Springer Nature Limited

    EPIdemiology of Surgery-Associated Acute Kidney Injury (EPIS-AKI) : Study protocol for a multicentre, observational trial

    Get PDF
    More than 300 million surgical procedures are performed each year. Acute kidney injury (AKI) is a common complication after major surgery and is associated with adverse short-term and long-term outcomes. However, there is a large variation in the incidence of reported AKI rates. The establishment of an accurate epidemiology of surgery-associated AKI is important for healthcare policy, quality initiatives, clinical trials, as well as for improving guidelines. The objective of the Epidemiology of Surgery-associated Acute Kidney Injury (EPIS-AKI) trial is to prospectively evaluate the epidemiology of AKI after major surgery using the latest Kidney Disease: Improving Global Outcomes (KDIGO) consensus definition of AKI. EPIS-AKI is an international prospective, observational, multicentre cohort study including 10 000 patients undergoing major surgery who are subsequently admitted to the ICU or a similar high dependency unit. The primary endpoint is the incidence of AKI within 72 hours after surgery according to the KDIGO criteria. Secondary endpoints include use of renal replacement therapy (RRT), mortality during ICU and hospital stay, length of ICU and hospital stay and major adverse kidney events (combined endpoint consisting of persistent renal dysfunction, RRT and mortality) at day 90. Further, we will evaluate preoperative and intraoperative risk factors affecting the incidence of postoperative AKI. In an add-on analysis, we will assess urinary biomarkers for early detection of AKI. EPIS-AKI has been approved by the leading Ethics Committee of the Medical Council North Rhine-Westphalia, of the Westphalian Wilhelms-University Münster and the corresponding Ethics Committee at each participating site. Results will be disseminated widely and published in peer-reviewed journals, presented at conferences and used to design further AKI-related trials. Trial registration number NCT04165369

    Liver transplantation for patients with human immunodeficiency virus and hepatitis C virus coinfection with special reference to hemophiliac recipients in Japan.

    Get PDF
    Liver transplantation for patients with hepatitis C virus (HCV) and human immunodeficiency virus (HIV) remains challenging. The advent of highly active antiretroviral therapy (HAART) for HIV has reduced mortality from opportunistic infection related to acquired immunodeficiency syndrome dramatically, while about 50% of patients die of end-stage liver cirrhosis resulting from HCV. In Japan, liver cirrhosis frequently develops after HCV-HIV coinfection resulting from previously transfused infected blood products for hemophilia. The problems of liver transplantation for those patients arise from the need to control calcineurin inhibitor with HAART drugs, the difficulty of using interferon after liver transplantation with HAART, and the need to control intraoperative coagulopathy associated with hemophilia. We review published reports of liver transplantation for these patients in the updated world literature

    Reflexions sobre el passat, present i futur del CERE

    No full text
    corecore